1. **Department, Course Number, Title**

 ORE 707, Nonlinear Water Wave Theories

2. **Designation as a Required or Elective Course**

 Elective

3. **Course Catalog Description**

 Higher-order theories. Forced oscillations. Stokes theory. Nonlinear shallow-water wave equations and hydraulic jumps; effects of rotation. Internal waves. Analytical techniques necessary will be developed as course progresses. Pre: consent.

4. **Prerequisites**

 1. Advanced Applied Mathematics
 2. Linear Water Wave Theory

5. **Textbooks and/or Other Reading Material**

 Textbook: Notes by R.C. Ertekin
 Reference books:

6. **ABET Course Learning Outcomes**

 (Course objectives) This course is designed to introduce graduate students into the treatment of nonlinear water waves in both deep and shallow waters.

7. **Topics Covered**

 1. Approach of Linear and nonlinear systems.
 2. Higher-order approximations to water waves.
 3. Perturbation methods.
 4. Stokes’ theory.
 5. Shallow-water waves - KdV and Boussinesq equations.
 7. Internal waves.
 8. Theory of directed fluid sheets.
 9. Nonlinear drift forces on offshore platforms.

8. **Class/laboratory schedule**

 Two 1.25-hour sessions per week.

9. **Contribution of Course to Meeting the Requirements of Criterion 5**

 Usage of Engineering Tools and Computers
Write programs to solve various nonlinear wave propagation problems in time domain on workstations and micro computers.

Laboratory Projects
1. Linear-Nonlinear response model, ship and platform motions.
2. Selected shallow-water wave problems, shoaling, run-up.
3. Potential and viscous drift forces on floating bodies.

Contribution to Professional Component
Engineering Science: 2 credits
Engineering Design: 1 credit

10. **Relationship to Program Outcomes**
 Program Outcome 2: Basic science, mathematics, & engineering
 Program Outcome 6: Problem formulation & solution

11. **Prepared by and date of revision/preparation**
 R.C. Ertekin, 2009