F A C U L T Y    A T    O R E

Appointments Awards & HonorsJournal PublicationsSponsored researchCourses taughtProfessional service and affiliationsORE Home

 

Kwok Fai Cheung

  • Professor

  • Journal Publications
  • Arranged in order of publication by topics. †Graduate and ‡post-doctoral students of K.F. Cheung at the University of Hawaii are annotated accordingly.
  • Probabilistic, Stochastic, and Risk Analysis

  • Taflanidis, A.A., Kennedy, A.B., Westerink, J.J., Smith, J.M., Cheung, K.F., Hope, M., and Tanaka, S (2013). A comprehensive theoretical and computational framework for probabilistic hurricane-risk assessment. Journal of Waterway, Port, Coastal, and Ocean Engineering, 139,171-182.
  • Cheung K.F., Wei, Y., ‡Yamazaki, Y., and Yim, S.C. (2011). Modeling of 500-year tsunamis for probabilistic design of coastal infrastructure in the Pacific Northwest. Coastal Engineering, 58(10), 970-985.
  • †Ge, L. and Cheung, K.F. (2011). Spectral sampling method for uncertainty propagation in long-wave runup modeling. Journal of Hydraulic Engineering, 137(3), 277-288.
  • †Ge, L., Cheung, K.F., and Kobayashi, M.H. (2008). Stochastic solution for uncertainty propagation in nonlinear shallow-water equations. Journal of Hydraulic Engineering, 134(12), 1732-1743.
  • Tsunami Source Mechanism


  • Lay, T. †Li, L., and Cheung, K.F. (2016). Modeling tsunami observations to evaluate a proposed late tsunami earthquake stage for the 16 September 2015 Illapel, Chile, Mw 8.3 earthquake. Geophysical Research Letters, 43(15), 7902-7912.
  • †Li, L., Cheung, K.F., Yue, H., Lay, T., and ‡Bai, Y. (2016). Effects of dispersion in tsunami Green's functions and implication for joint inversion with seismic and geodetic data: a case study of the 2010 Mentawai Mw 7.8 earthquake. Geophysical Research Letters, 43, 11182-11191.
  • Ye, L., Kanamori, H., Avouac, J.-P., †Li, L., Cheung, K.F., and Lay, T. (2016). The 16 April 2016, Mw 7.8 (Ms 7.5) Ecuador earthquake: a quasi-repeat of the 1942 Ms 7.5 earthquake and partial re-rupture of the 1906 Ms 8.6 Colombia-Ecuador earthquake. Earth and Planetary Science Letters, 454, 248-258.
  • †Li, L., Lay, T., Cheung, K.F., and Ye, L. (2016). Joint modeling of teleseismic and tsunami wave observations to constrain the 16 September 2015 Illapel, Chile Mw 8.3 earthquake rupture process. Geophysical Research Letters, 43(9), 4303-4312.
  • Yue, H., Lay, T., †Li, L., ‡Yamazaki, Y., Cheung, K.F., Rivera, L., Hill, E.M., Sieh, K., Kongko, W., and Muhari, A. (2015). Validation of linearity assumptions for using tsunami waveforms in joint inversion of kinematic rupture models: Application to the 2010 Mw 7.8 Mentawai tsunami earthquake.Journal of Geophysical Research: Solid Earth, 120(3), 1728-1747.
  • ‡Bai, Y., Cheung, K.F.,‡ Yamazaki, Y., Lay, T., and Ye, L. (2014). Surges around the Hawaiian Islands from the 1 April 2014 North Chile Mw 8.1 earthquake. Geophysical Research Letters, 41(23), DOI: 10.1002/2014GL061686
  • Yue, H., Lay, T., Rivera, L.A.,‡ Bai, Y., ‡Yamazaki, Y., Cheung, K.F., Hill, E.M., Sieh, K.E., Kongko, W., and Muhari, A. (2014). Rupture process of the 2010 Mw 7.8 Mentawai tsunami earthquake from joint inversion of near-field hr-GPS and teleseismic body wave recordings constrained by tsunami observations. Journal of Geophysical Research: Solid Earth, 119(7), 5574-5593.
  • Lay, T., Ye, L., Kanamori, H., ‡Yamazaki, Y., Cheung, K.F., and Ammon, C.J. (2013). The February 6, 2013 Mw 8.0 Santa Cruz Islands earthquake and tsunami. Tectonophysics, 608, 1109-1121.
  • Lay, T., Ye, L., Kanamori, H., ‡Yamazaki, Y., Cheung, K.F., Kwong, K., and Koper, K.D. (2013). The October 28, 2012 Mw 7.8 Haida Gwaii underthrusting earthquake and tsunami: Slip partitioning along the Queen Charlotte Fault transpressional plate boundary. Earth and Planetary Science Letters, 375, 57-70.
  • ‡Yamazaki, Y., Cheung, K.F., and Lay, T. (2013). Modeling of the 2011 Tohoku near-field tsunami from finite-fault inversion of seismic waves. Bulletin of the Seismological Society of America,, 103(2b),1444-1455.
  • Lay, T., Ammon, C.J., Kanamori, H., ‡Yamazaki Y., Cheung, K.F., and Hutko, A.R. (2011). The 25 October 2010 Mentawai tsunami earthquake (Mw 7.8) and the tsunami hazard presented by shallow megathrust ruptures. Geophysical Research Letters, 38(6), L06302, Doi: 10.1029/2010GL046552.
  • Lay, T., ‡Yamazaki, Y., Ammon, C.J., Cheung, K.F., and Kanamori, H. (2011). The 2011 Off the Pacific Coast of Tohoku earthquake: Comparison of deep-water tsunami signals with finite-fault rupture model predictions. Earth, Planets and Space, 63(7), 797-801.
  • ‡Yamazaki Y., Lay, T., Cheung, K.F., Yue, H., and Kanamori, H. (2011). Modeling near-field tsunami observations to improve finite-fault slip models for the 11 March 2011 Tohoku earthquake. Geophysical Research Letters,38, L00G15, Doi: 10.1029/2011GL049130.
  • Tsunami Impact Assessment


  • ‡Bai, Y. and Cheung, K.F. (2016). Hydrostatic versus non-hydrostatic modeling of tsunamis with implications for insular shelf and reef environments. Coastal Engineering, 117, 32-43.
  • Benjamin, L.R., Flament, P., Cheung, K.F., and Luther, D.S. (2016). The 2011 Tohoku tsunami south of Oahu: high-frequency Doppler radio observations and model simulations of currents. Journal of Geophysical Research: Oceans, 121(2), 1133-1144.
  • ‡Bai, Y., ‡Yamazaki, Y., and Cheung, K.F. (2015). Interconnection of multi-scale standing waves across the Pacific from the 2011 Tohoku tsunami. Ocean Modelling, 92, 183-197
  • Yim, S.C., Olsen, M.J., Cheung, K.F., and Azadbahkt, M. (2014). Tsunami modeling, structural load simulation, and validation using geospatial field data. Journal of Structural Engineering, 140(8), A4014012.
  • Cheung, K.F., ‡Bai, Y., and ‡Yamazaki, Y. (2013). Surges around the Hawaiian Islands from the 2011 Tohoku tsunami. Journal of Geophysical Research: Oceans, 118(10), 5703-5719, doi: 10.1002/jgrc.20413.
  • Olsen, M.J., Cheung, K.F., ‡Yamazaki, Y., Butcher, S., Garlock, M., Yim, S., McGarity, S., Robertson, I.N., Burgos, L., and Young, Y.L. (2012). Damage assessment of the 2010 Chile earthquake and tsunami using ground-based LiDAR.Earthquake Spectra,28(S1), 179-197.
  • ‡Yamazaki, Y., Cheung, K.F., Pawlak, G., and Lay, T. (2012). Surges along the Honolulu coast from the 2010 Tohoku tsunami. Geophysical Research Letters, 39, L09604, Doi: 10.1029/2012GL051624.
  • ‡Yamazaki, Y. and Cheung, K.F. (2011). Shelf resonance and impact of near-field tsunami generated by the 2010 Chile earthquake. Geophysical Research Letters, 38, L09604, Doi: 10.1029/2011GL047508.
  • †Roeber, V., ‡Yamazaki, Y., and Cheung, K.F. (2010). Resonance and impact of the 2009 Samoa tsunami around Tutuila, American Samoa. Geophysical Research Letters, 37(21), L21604, Doi: 10.1029/2010GL044419.
  • †Munger, S. and Cheung, K.F. (2008). Resonance in Hawaii waters from the 2006 Kuril Islands Tsunami. Geophysical Research Letters, 35(7), L07605, Doi: 10.1029/2007GL032843.
  • Bricker, J.D., †Munger, S., Pequignet, C., Wells, J.R., Pawlak, G., and Cheung, K.F. (2007). ADCP observations of edge waves off Oahu in the wake of the November 2006 Kuril Islands Tsunami. Geophysical Research Letters, 34(23), L23617, Doi: 10.1029/2007GL032015.
  • Tsunami Forecasting

  • †Namekar, S., †Yamazaki, Y., and Cheung, K.F. (2009). Neural network for tsunami and runup forecast. Geophysical Research Letters, 36(8), L08604, Doi: 10.1029/2009GL037184.
  • †Sánchez, A. and Cheung, K.F. (2007). Tsunami forecast using an adaptive inverse algorithm for the Peru-Chile source region. Geophysical Research Letters, 34(13), L13605, Doi: 10.1029/ 2007GL030158.
  • †Yamazaki, Y., †Wei, Y., Cheung, K.F., and Curtis, G.D. (2006). Forecast of tsunamis from the Japan-Kuril-Kamchatka source region. Natural Hazards, 38(3), 411-435.
  • †Wei, Y., Cheung, K.F., Curtis, G.D., and McCreery, C.S. (2003). Inverse algorithm for tsunami forecasts. Journal of Waterway, Port, Coastal, and Ocean Engineering, 129(2), 60-69.
  • Wind Waves Modeling

  • Li, N., Cheung, K.F., Stopa, J.E., Chen, Y.-L., Hsiao, F., Vega, L., and Cross, P. (2016). Thirty-four years of Hawaii wave hindcast from downscaling of Climate Forecast System Reanalysis. Ocean Modelling, 100, 78-95.
  • Foster, J., ‡Li, N., and Cheung, K.F. (2014). Sea state determination from ship-based geodetic GPS. Journal of Atmospheric and Oceanic Technology, 31(11), 2556-2564.
  • †Stopa, J.E. and Cheung, K.F. (2014). Periodicity and pattern of ocean wind and wave climate. Journal of Geophysical Research: Oceans, 119(8), 5563–5584.
  • †Stopa, J.E. and Cheung, K.F. (2014). Intercomparison of wind and wave data from the ECMWF Reanalysis Interim and NCEP Climate Forecast System Reanalysis. Ocean Modelling, 75, 65-83
  • †Stopa, J.E., Cheung, K.F., Tolman, H.L., and Chawla, A. (2013). Patterns and cycles in the Climate Forecast System Reanalysis wind and wave data. Ocean Modelling, 70, 207-220. .
  • †Stopa, J.E., ‡Filipot, J.-F., ‡Li, N., Cheung, K.F., Chen, Y.-L., and Vega, L. (2013). Wave energy resources along the Hawaiian Islands chain. Renewable Energy, 55, 305-321.
  • †Stopa, J.E., Cheung, K.F., Garcé, M.A., and Badger, N. (2012). Atmospheric Infrasound from nonlinear wave interactions during Hurricanes Felicia and Neki of 2009. Journal of Geophysical Research, 117, C12017, Doi: 10.1029/2012JC008257.
  • †Arinaga, R.A. and Cheung, K.F. (2012). Atlas of global wave energy from 10 years of reanalysis and hindcast data. Renewable Energy, 39,49-64.
  • ‡Filipot, J.-F. and Cheung, K.F. (2012). Spectral wave modeling for fringing reef environment. Coastal Engineering, 67, 67-79.
  • †Stopa, J.E., Cheung, K.F., Garcé, M.A., and Fee, D. (2011). Microbarom source from hurricane waves.Geophysical Research Letters, 38(5), L05602, Doi: 10.1029/2010GL046390.
  • †Stopa, J.E., Cheung, K.F., and Chen, Y.-L. (2011). Assessment of wave energy resources in Hawaii.Renewable Energy, 36(2), 554-567.
  • †Phadke, A.C., †Martino, C.D., Cheung, K.F., and Houston, S.H. (2003). Modeling of tropical cyclone winds and waves for emergency management.Ocean Engineering, 30(4), 553-578.
  • Hurricane-induced Coastal Flooding

  • ‡Li, N., ‡Roeber, V.,‡ Yamazaki, Y.,† Heitmann, T.W.‡, Bai, Y., and Cheung, K.F. (2014). Integration of coastal inundation modeling from storm tides to individual waves. Ocean Modelling, 83, 26-42.
  • Kennedy, A.B., Westerink, J.J., Smith, J.M., Hope, M.E., Hartman, M., Taflanidis, A.A., Tanaka, S., Westerink, H, Cheung, K.F., Smith, T., Hamann, M., Minamide, M., Ota, A. (2012). Tropical cyclone inundation potential on the Hawaiian Islands of Oahu and Kauai. Ocean Modelling, 52, 54-68.
  • Cheung, K.F., ‡Tang, L., Donnelly, J.P., Scileppi, E., Liu, K.-B., ‡Mao, X.Z., Houston, S.H., and Murnane, R.J. (2007). Numerical modeling and field evidence of coastal overwash in southern New England from Hurricane Bob and implications for paleotempestology.Journal of Geophysical Research, 112(3), F03024, Doi: 10.1029/2006JF000612.
  • Cheung, K.F., †Phadke, A.C., †Wei, Y., †Rojas, R., †Douyere, Y.J.-M., †Martino, C.D., Houston, S.H., Liu, P.L.-F., Lynett, P.J., Dodd, N., Liao, S., and Nakazaki, E. (2003). Modeling of storm-induced coastal flooding for emergency management.Ocean Engineering, 30(11), 1353-1386.
  • Mathematical and Numerical Analysis

  • ‡Bai, Y. and Cheung, K.F. (2016). Linear and nonlinear properties of reduced two-layer models for non-hydrostatic free surface flow. Ocean Modelling, 107, 64-81.
  • ‡Bai, Y. and Cheung, K.F. (2015). Dispersion and kinematics of multi-layer non-hydrostatic models. Ocean Modelling, 92, 11-27.
  • †Bai, Y. and Cheung, K.F. (2013). Dispersion and nonlinearity of multi-layer non-hydrostatic free-surface flows. Journal of Fluid Mechanics, 726, 226-260.
  • †Wu, Y.Y. and Cheung, K.F. (2010). Two-parameter homotopy method for nonlinear equations.Numerical Algorithms, 53(4), 555-572.
  • †Wu, Y.Y. and Cheung, K.F. (2009). Homotopy solution for nonlinear differential equations in wave propagation problems.Wave Motion, 46(1), 1-14.
  • Liao, S.J. and Cheung, K.F. (2003). Homotopy analysis of nonlinear progressive waves in deep water. Journal of Engineering Mathematics, 45(2), 105-116.
  • Sediment Transport and Coastal Morphology

  • Cheung, K.F., Gerritsen, F., and Cleveringa, J. (2007). Morphodynamics and sand bypassing at Ameland Inlet, The Netherlands. Journal of Coastal Research, 23(1), 106-118.
  • †Smith, D.A. and Cheung, K.F. (2005). Transport rate of calcareous sand in uni-directional flow. Sedimentology, 52(5), 1009-1020.
  • †Smith, D.A. and Cheung, K.F. (2004). Initiation of motion of calcareous sand. Journal of Hydraulic Engineering, 130(5), 467-472.
  • †Smith, D.A. and Cheung, K.F. (2003). Settling characteristics of calcareous sand. Journal of Hydraulic Engineering, 129(6), 479-483.
  • †Smith, D.A. and Cheung, K.F. (2002). Empirical relationships for grain size parameters of calcareous sand on Oahu, Hawaii.Journal of Coastal Research, 18(1), 82-93.
  • Nonlinear Long-wave Models

  • †Wesley, M.J. and Cheung, K.F. (2016). Modeling of wave overtopping on vertical structures with the HLLS Riemann solver. Coastal Engineering, 112, 28-43.
  • †Yamazaki, Y., Cheung, K.F., and Kowalik, Z. (2011). Depth-integrated, non-hydrostatic model with grid nesting for tsunami generation, propagation, and run-up. International Journal for Numerical Methods in Fluids, 67(12), 2081-2107
  • †Yamazaki, Y., Kowalik, Z., and Cheung, K.F. (2009). Depth-integrated, non-hydrostatic model for wave breaking and run-up. International Journal for Numerical Methods in Fluids, 61(5), 473-497.
  • †Wu, Y.Y. and Cheung, K.F. (2008). Explicit solution to the exact Riemann problem and application in nonlinear shallow-water equations.International Journal for Numerical Methods in Fluids, 57(11), 1649-1668.
  • †Wei, Y., ‡Mao, X.Z., and Cheung, K.F. (2006). Well-balanced finite volume model for long-wave runup. Journal of Waterway, Port, Coastal, and Ocean Engineering, 132(2), 114-124.
  • Zhou, X., Hon, Y.C., and Cheung, K.F. (2004). A grid-free, nonlinear shallow-water model with moving boundary. Engineering Analysis with Boundary Elements, 28(8), 967-973.
  • Hon, Y.C., Cheung, K.F., Mao, X.Z., and Kansa, E.J. (1999). Multiquadric solution for shallow water equations. Journal of Hydraulic Engineering, 125(5), 524-533.
  • Hydroelasticity

  • †Das, S. and Cheung, K.F. (2012). Hydroelasticity of marine vessels advancing in a seaway. Journal of Fluids and Structures, 34, 271-290.
  • †Das, S. and Cheung, KF. (2009). Coupled boundary element and finite element model for fluid-filled membrane in gravity waves. Engineering Analysis with Boundary Elements, 33(6), 802-814.
  • †Phadke, A.C. and Cheung, K.F. (2003). Nonlinear response of fluid-filled membrane in gravity waves. Journal of Engineering Mechanics, 129(7), 739-750.
  • †Phadke, A.C. and Cheung, K.F. (2001). Resonance and response of fluid-filled membrane in gravity waves. Applied Ocean Research, 23(1), 15-28.
  • †Phadke, A.C. and Cheung, K.F. (1999). Response of a bottom mounted fluid-filled membrane in gravity waves. Journal of Waterway, Port, Coastal, and Ocean Engineering, 125(6), 294-303.
  • Cheung, K.F., Seidl, L.H., and Wang, S. (1998). Analysis of SWATH ship structures. Marine Technology, 35(2), 85-97.
  • Coastal and Surf-zone Processes

  • †Quiroga, P.D. and Cheung, K.F (2013).. Laboratory study of wave transformation over bed-form roughness on fringing reefs. Coastal Engineering, 80, 35-48.
  • †Bai, Y. and Cheung, K.F.(2013) Depth-integrated free surface flow with parameterized non-hydrostatic pressure. International Journal for Numerical Methods in Fluids, 10.1002/fld.3664,403-421.
  • †Bai, Y. and Cheung, K.F. (2012). Depth-integrated free-surface flow with a two-layer non-hydrostatic formulation. International Journal for Numerical Methods in Fluids, 69(2), 411-429.
  • ‡Roeber, V. and Cheung, K.F.(2012) Boussinesq-type model for wave transformation over fringing reefs. Coastal Engineering,70, 1-20.
  • †Roeber, V., Cheung, K.F., and Kobayashi, M.H. (2010). Shock-capturing Boussinesq-type model for nearshore wave processes. Coastal Engineering, 57(4), 407-423.
  • †Chandrasekera, C.N. and Cheung, K.F. (2001). Linear refraction-diffraction model for steep bathymetry. Journal of Waterway, Port, Coastal, and Ocean Engineering, 127(3), 161-170.
  • ‡Lee, S.K. and Cheung, K.F. (1999). Laminar and turbulent bottom boundary layer induced by nonlinear water waves. Journal of Hydraulic Engineering, 125(6), 631-644.
  • †Chandrasekera, C.N. and Cheung, K.F. (1997). Extended linear refraction-diffraction model. Journal of Waterway, Port, Coastal, and Ocean Engineering, 123(5), 280-286.
  • Offshore and Marine Hydrodynamics

  • †Das, S. and Cheung, KF. (2012). Scattered waves and motions of a vessel advancing in a seaway. Wave Motion, 49(1), 181-197.
  • Cheung, K.F., †Phadke, A.C., †Smith, D.A., ‡Lee, S.K., and Seidl, L.H. (2000). Hydrodynamic response of a pneumatic floating platform.Ocean Engineering, 27(12), 1405-1438.
  • Skourup, J., Cheung, K.F., Bingham, H.B., and Büchmann, B. (2000). Second order wave force on 3D bodies in a current. Ocean Engineering, 27(7), 707-727.
  • Büchmann, B., Skourup, J., and Cheung, K.F. (1998). Runup on a structure due to second-order waves and a current. Applied Ocean Research, 20(5), 297-308.
  • Cheung, K.F., Isaacson, M., and Lee, J.W. (1996). Wave diffraction around three-dimensional bodies in a current. Journal of Offshore Mechanics and Arctic Engineering, 118(4), 247-252.
  • Cheung, K.F. and Lee, J.W. (1996). Performance of a submerged wave focusing structure in a current. International Journal of Offshore and Polar Engineering, 6(1), 47-52.
  • Isaacson, M. and Cheung, K.F. (1994). Correction factors for nonlinear runup and wave forces on a large cylinder. Canadian Journal of Civil Engineering, 21(5), 762-769.
  • Cheung, K.F., Isaacson, M., and Ng, J.Y.K. (1993). Time-domain solution for second-order wave radiation. Marine Structures, 6(2&3), 241-258.
  • Isaacson, M. and Cheung, K.F. (1993). Time-domain solution for wave-current interactions with a two-dimensional body. Applied Ocean Research, 15(1), 39-52.
  • Isaacson, M., Ng, J.Y.T., and Cheung, K.F. (1993). Second-order wave radiation of three-dimensional bodies by time-domain method. International Journal of Offshore and Polar Engineering, 3(4), 264-272.
  • Isaacson, M., Cheung, K.F., Mansard, E., and Miles, M.D. (1993). Transient wave propagation in a laboratory flume. Journal of Hydraulic Research, 31(5), 665-680.
  • Isaacson, M. and Cheung, K.F. (1992). Time-domain second-order wave diffraction in three dimensions. Journal of Waterway, Port, Coastal, and Ocean Engineering, 118(5), 496-516.
  • Cheung, K.F. and Isaacson, M. (1991). Two alternative field solutions for second-order wave diffraction. Journal of Offshore Mechanics and Arctic Engineering, 113(3), 185-192.
  • Isaacson, M. and Cheung, K.F. (1991). Second-order wave diffraction around two-dimensional bodies by time-domain method. Applied Ocean Research, 13(4), 175-186.
  • Isaacson, M. and Cheung, K.F. (1990). Time-domain solution for second-order wave diffraction. Journal of Waterway, Port, Coastal and Ocean Engineering, 116(2), 191-210.
  • Isaacson, M. and Cheung, K.F. (1988). Influence of added mass on ice impacts. Canadian Journal of Civil Engineering, 15(4), 698-708.
  • Isaacson, M. and Cheung, K.F. (1988). Hydrodynamics of ice mass near large offshore structure. Journal of Waterway, Port, Coastal, and Ocean Engineering, 114(4), 487-502.

 

Cheung

1.